THE WINTERTON FEDERATION MEDIUM TERM PLAN SCIENCE Spring 2 YEAR 5

Lets Get	Learning Objective	Activity – Switched On Science	STEM Activities	Success Criteria
Moving				
Moving Session 1	To explain some of the effects of gravity. To plan, carry out and explain fair tests.	Show three different balls of about the same size but of different weight. Ask them what would happen if you dropped them from the same height at the same time. Gather their answers. Then drop the balls and show them that they all hit the ground at the same time. Reinforce this by showing the following YouTube clip: https:// www.youtube.com/watch?v=Z789eth4IF Discuss in more detail some ideas about gravity. Explain that something is pulling the balls down towards the centre of the Earth and this is a force called gravity. Then tell		I can explain what makes objects fall to the Earth. I can plan a fair test to find out how well different objects fall. I can extend my investigation and tests as a result of my observations.
		them all about Galileo's experiment at Pisa. Present a collection of everyday objects to weigh using a force meter. Record their results in a table. Explain that gravity is pulling each object downwards with a force. This force is also called weight. The force meter measures this force (weight) in units called newtons. Show a globe and hold a matchstick man at the top. Ask them to draw on the whiteboard		
		what gravity does to the man. Repeat this with the man at the South Pole and near to the equator. They should always draw the man being pulled towards the centre of the Earth and not downwards. Next, ask the children to draw a picture of the Earth with clouds all around it. Ask them to draw a picture to show which direction the rain falls and why. They can use 'How does gravity act?' (Activity resource book, page 30). Get the children to research the contributions that Galileo and Isaac Newton made to the discovery of gravity. Write two newspaper		

	articles about the scientists, their key	
	experiments and how this helped to develop	
	the theory of gravity. They can use 'Read all	
	about it' (Activity resource book, page 31) as	
	a scaffold. Finally, ask children to draw a	
	picture of the Moon and think what would	
	happen if they could walk on it. Discuss the	
	fact that the Moon has gravity but the	
	downward pull is not as strong as it is on	
	Earth. This makes walking very diferent, but	
	means you can jump much higher. To	
	illustrate this, show the YouTube clip of Neil	
	Armstrong walking on the Moon:	
	www.youtube.com/	
	watch?v=RMINSD7MmT4	
Session 2	Ask children to run across the playground,	
	holding a large sheet of card in front of them.	
	Back in the classroom, discuss what they	
	experienced. Ask them to explain what is	
	happening in a drawing using the idea of	
	forces.	
	Discuss the concept of air resistance as a	
	force that slows down objects as they move	
	through the air. Ask the children to explain,	
	using drawings, the forces that might act on a	
	kite, a sail or a large boat. Explain that air	
	resistance also tries to slow down objects that	
	move through the air, such as jet planes.	
	Get into groups: Explain to the children that	
	they are going to develop their skills of	
	investigating as they find out more about how	
	objects fall. Choose from the three	
	investigations below. Think about the factors	
	they are investigating: in particular, what they	
	need to keep the same, what they need to	
	change and what they need to measure. Also	
	ask them to think about the best way of	
	recording their results and to explain clearly	
	what their results tell them about their	
	investigation. Choose from the following:	

		 Falling cup cakes cases: The children time how long different cupcake cases take to fall from the same height. They can record their results in a table and then analyse them in a conclusion. Falling rotocopters: The children make various designs of rotocopters out of paper and/or other materials. They can then design a fair test to see which design means that it fies the furthest, longest or quickest. You will have to guide them on what is meant by the word 'best'. These step-by-step instructions will help you with this activity: www. exploratorium.edu/science_explorer /rotocopter.html Falling parachutes: The children investigate various designs of parachutes and test various questions. For example, does the size or material of the parachute affect how long it takes to fall? Do parachutes work better if they have holes or slips in the fabric? Some could go on to identify new questions to test as a result of the observations they make. 	
Session 3	To observe a variety of forces that slow things down. To set up, carry out and make sense of a variety of investigations	Looking for a fun experiment? Show children the following YouTube clip: www.youtube. com/watch?v=Z7zkDWPKG-o. Discuss what's going on. Roll some tins along the floor. Ask children to guess what might happen. Discuss why the tins move at different speeds even though you gave them the same kind of push. Tell children they are going to develop more investigation skills. Choose one of these investigations:	I can plan a fair test to investigate friction and water resistance. I can make some detailed observations and present them clearly. I can come up with a sensible conclusion.

	sizes, and to vary the size and shape of their	
	Encourage them to make them different	
Session 4	Mmake some sailing boats out of paper.	
	on. html	
	sciencekids.co.nz/gamesactivities/forcesinacti	
	interactive game 'Forces in action': www.	
	Use tablets or computers to play the fun,	
	what is going on.	
	difference. Then ask the children to explain	
	more of them to another bowl. Compare the	
	sunflower oil to the jelly cubes and move	
	another with chopsticks. Now add a little	
	by transferring jelly cubes from one bowl to	
	Challenge the children to investigate friction	
	the tests to check them.	
	ensuring the results are reliable by repeating	
	meter. Focus on measuring accurately and	
	across different surfaces by using a force	
	the forces need to pull different trainers	
	predictions. 3. The big trainer test: Investigate	
	collect and relating the results to the	
	down. Focus on deciding on what evidence to	
	slope on which the object will start to slide	
	they could use it to measure the height of a	
	start an object moving on a fat surface. Or	
	a force meter to measure the force needed to	
	guidance you give each group. They might use	
	happen. Differentiate by the amount of	
	carpet. Ask them what they think might	
	different surfaces – e.g., wood, vinyl and	
	most easily. Try this with at least three	
	investigate on which surfaces objects slide	
	2. Sliding surfaces: Ask the children to	
	remember to focus on making the test fair.	
	sticks. Note the safety requirements. And	
	time, at the same heat. Compare how much	
	same food in different pans for the same	
	they might do this. For example, cook the	
	how non-stick a cooking pan is. Discuss how	
	1. Sticky stuff: Ask the children to investigate	

		sails. Get them to blow the boats in water	
		around an obstacle course using straws to do	
		this. Encourage them to discuss in talking	
		partners the different forces that were	
		•	
		involved in moving and stopping the boats.	
		Ask them if there were any particular designs	
		that worked well. Remember to emphasise	
		the point that water resistance is a force that	
		slows down an object as it moves through	
		water.	
		Show children a tall cylinder full of water. Ask	
		them what they could do with this, and a	
		small piece of plasticine, to find out which	
		shape moves most easily through water. Help	
		decide what to measure: for example, the	
		time it takes for the plasticine to fall halfway	
		or all the way down the cylinder. Encourage	
		them to think about the work they have done	
		in mathematics about different shaped solids.	
		They could make some of these out of the	
		plasticine. Ensure children are clear about	
		what they need to change and measure in	
		their fair test. Encourage them to repeat their	
		test several times in order to average out	
		their results. Finally, ask them to explain the	
		results in terms of how the shape of the	
		object affects the size of the water resistance.	
		Group consolidation: Show children some	
		photos of ships	
Session 5	To be able to explain how	Show an example of a machine with a lever,	I can explain how levers, springs,
	levers, pulleys, springs and	pulley, spring or gear. Use talking partners to	pulleys and gears transmit force
	gears transfer force and	discuss how they work. Children draw and	and motion.
	motion.	label how each of the machines transfer force	I can make some simple
	To design and make	and/or motion on whiteboard	machines.
	machines that use levers,	Provide children with a collection of everyday	I can design and make a Rube
	pulleys, springs and gears	machines that use springs, levers pulley or	Goldberg machine containing at
	Parrelo, obringe and Scalo	gears. This might include: A stapler A hand	least four different simple
		whisk with gears A pair of scissors A bicycle A	machines.
		wheelbarrow Pulleys on a blind A picture of a	machines.
		fagpole A spring-loaded mousetrap A bottle	
		Taghole A shime-loaded mousefrap A pottle	

	opener A geared toy A spring-loaded ball pen
	A pair of scales (with springs) A fshing rod Ask
	your children to sort the objects into those
	that have a lever, pulley, spring or gear.
	Children make a variety of these machines
	out of everyday items.
	For a pulley, your children could use coat
	hangers and other materials:
	www.sciencetech.
	technomuses.ca/english/schoolzone/activitie
	s_mach1.cfm
	For a lever, they could make a catapult from a
	coat hanger and elastic bands. See: science.
	wonderhowto.com/how-to/build-catapult-
	outrubber-bands-wire-hanger-321541
	For a lever, the children could make a rubber
	band/store card fipper toy. See: www.
	scittscience.co.uk/2011/09/make-a-
	rubberband-fipper-toy Build working gears
	out of paper using this resource:
	www.instructables.com/id/How-toBuild-
	Gears-from-Junkmail-and-Cardstock Group
	consolidation: Use the interactive resource
	'Sorting machines' (My Rising Stars) to group
	machines into various types.
Session 6	An additional Activity - Make a Machine from
	Rising Stars Unit plan.