
Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

1

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

2

Contents
Introduction ... 3

Program Design ... 3

Levels of Scaffolded coding tasks .. 4

Year 4 – Medium Term Plan .. 5

Lesson 1 – Review the design, code, test, debug process ... 6

Aims ... 6

Success criteria .. 6

Resources .. 6

Activities .. 6

Lesson 2 – If/Else statements .. 8

Aims ... 8

Success criteria .. 8

Resources .. 8

Activities .. 8

Lesson 3 – Repeat Until ... 11

Aims ... 11

Success criteria .. 11

Resources .. 11

Activities .. 11

Lesson 4 – Making a timer ... 14

Aim .. 14

Success criteria .. 14

Resources .. 14

Activities .. 14

Lesson 5 - Making a control simulation ... 15

Aim .. 15

Success criteria .. 15

Resources .. 15

Activities .. 15

Lesson 6 – Decomposition and Abstraction .. 20

Aim .. 20

Success criteria .. 20

Resources .. 20

Activities .. 20

Assessment Guidance .. 21

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

3

Introduction
This unit consists of six lessons that assume children have followed the Coding Scheme of Work in Years 1 to

3. If most of the class have not, use the Coding Catch-Up unit instead of this unit.

New coding vocabulary is shown in bold within the lesson plans, use these new words in context to help

children understand the meaning of them and start to build up, their vocabulary of coding words.

The Gibbon guided activities provide further practice of the concepts that the children will be learning and

can be used as extension activities. More able children can be encouraged to explore other things that they

can change in their programs and experiment with the options available, such as variables and ‘if’

statements.

Children will often be able to solve their own problems when they get stuck, either by reading through their

code again or by asking their peers; this models the way that coding work is really done. More able pupils

can be encouraged to support their peers, if necessary, helping them to understand but without doing the

work for them.

Program Design

To master coding skills, children need to have the opportunity to explore program design and put

computational thinking into practice. The lesson plans incorporate designing before coding in some lessons.

Storyboarding their ideas for programs. For example, creating a storyboard when planning a program that
will retell part of a story.

• Creating annotated diagrams. For example, creating an annotated diagram to plan a journey
animation that tells the story of an historical event they have been studying.

• Creating a timeline of events in the program. For example, creating a game program against
the computer, what are all the actions needed from the objects?

• Using the 2Chart tool to create flowcharts of the processes.

During the design process, children should be encouraged to clarify:

• the characters (objects and their properties)

• what they will do (actions and events)

• what order things will happen (the algorithm)

• rate their confidence at being able to code the different parts of their design and either

refine the design or review possible solutions as a class or group.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

4

Levels of Scaffolded coding tasks

You can support children’s learning and understanding by using different degrees of scaffolding when

teaching children to code. The lessons provide many of these levels of scaffolding within them and using

Free Code Chimp, Gibbon and Gorilla enables children to clarify their thinking and practice their skills. These

are not progressive levels, children can benefit from all the levels of activities at whatever coding skill level

they are:

Scaffolding Task type Examples of how to provide these opportunities

Copying code By giving children examples of code to copy.

Targeted tasks
• Read and understand code

• Remix code to achieve a particular outcome.

• Debugging.

• Use printed code snippets so that children can’t run the code but must read

it.

• Include unplugged activities and ‘explaining’ tasks e.g. ‘how do variables
work?’

Shared coding • Sharing Challenge activities as a class or group on the whiteboard.

• Complete guided activity challenges as a class.

• After completing challenges; share methods to create a class version of the

challenge.

• Free coding as a class

Guided
exploration

• Exploring a limited repertoire of commands

• Remixing code

• Explore commands in free code before being taught what they do.

• Use questioning to support children’s learning.

Project design

and code

Projects (imitate, innovate, invent, remix)

There are different ways to scaffold learning in projects. This process can be

applied to programming projects;

• Using example projects e.g. the Guided 2Code activities.

• Completing the challenges at the end of each guided activity.

• Free code✓

• Create a project that imitates a high-quality exemplar.

• Remixing ideas.

• Independently creating a brand-new program.

Tinkering Use Free code Gorilla to access the full suite of 2Code objects and commands

✓

Use Free code to play and explore freely.

Note: To force links within this document to open in a new tab, right-click on the link then select ‘Open link

in new tab’.

In Literacy, some teachers follow a progression that scaffolds learning to write texts. At first pupils

read lots of examples of the genre of text they are going to create. Then they create an imitation

of an example text. Next, they create a variation of the text (remix and innovate). Finally, they get

to inventing a brand-new version.

Most

scaffolded

Least

scaffolded

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

5

Year 4 – Medium Term Plan

Lesson Aims Success Criteria

Lesson 1 –

Review the

design, code,

test, debug

process

• To review coding vocabulary.

• To use a sketch or storyboard to
represent a program design and
algorithm.

• To use the design to create a
program.

• Children can use sketching to design a program and
reflect upon their design.

• Children can create code that conforms to their design.

Lesson 2 –

If/Else

statements

• To introduce the If/else statement

and use it in a program.

• To create a variable.

• To explore a flowchart design for a

program with an if/else statement

• To create a program which

responds to the If/else command,

using the value of the variable.

• Children can create an ‘If/else’ statement.

• Children understand what a variable is in programming.

• Children can set/change the variable values

appropriately.

• Children can interpret a flowchart that depicts an if/else

flowchart.

Lesson 3 –

Repeat Until
• To create a program with a

character that repeats actions.

• To use the Repeat Until command

to make characters repeat actions.

• To program a character to

respond to user keyboard input.

• Children can show how a character repeats an action

and explain how they caused it to do so.

• Children can make a character respond to user keyboard

input.

Lesson 4 –

Making a timer
• To make timers and counting

machines using variables to print a

new number to the screen every

second.

• Children can explain what a variable is when used in

programming.

• Children can create a timer that prints a new number to

the screen every second.

• Children can explain how they made their program

change the number every second.

Lesson 5 -

Making a

control

simulation

• To explore how 2Code can be

used to investigate control by

creating a simulation.

• Children can create an algorithm modelling the

sequence of a simple event.

• Children can manipulate graphics in the design view to

achieve the desired look for the program.

• Children can use an algorithm when making a simulation

of an event on the computer.

Lesson 6 –

Decomposition

and

Abstraction

• To know what decomposition and

abstraction are in computer

science.

• To take a real-life situation,

decompose it and think about the

level of abstraction.

• To design a decomposed feature

of a real-life situation.

• Children can make good attempts to break down their
aims for a coding task into smaller achievable steps.

• Children recognise the need to start coding at a basic
level of abstraction to remove superfluous details from
their program that do not contribute to the aim of the
task.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

6

Lesson 1 – Review the design, code, test, debug

process
Aims

• To review coding vocabulary.

• To use a sketch or storyboard to represent a program design and algorithm.

• To use the design to create a program.

Success criteria

• Children can use sketching to design a program and reflect upon their design.

• Children can create code that conforms to their design.

Resources

Unless otherwise stated, all resources can be found on the main unit 4.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Coding Vocabulary Quiz 3

• Program Design examples to be displayed on the board.

• Plain paper for sketching a design or printed storyboard templates.

• Save a 2Write file called ‘Coding Hints needed’ in a shared class folder.

• (Optional) Vocabulary flash cards. The Teacher flash cards have been created in such a way that you

can print them on A4 paper, cut them to size, fold them in half and glue them together.

• (Optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

Activities

1. Use the quiz as a class. It is set up so that you attempt all questions and then click the

button to check the answers. Click ‘OK’ to see which are correct and incorrect:

2. You can use the vocabulary cards to find the answers and display in the classroom.

3. Put Free Code Gibbon on the board. Review how to add objects in 2Code by going in to Design

Mode. Drag a car and an animal into the Design View.

4. Ask children to sketch a simple design for a program in which two objects perform actions. They

should detail the types of objects, the actions that the objects will perform and the events which will

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y4/computing_sow_y4_4-1
https://www.purplemash.com/app/games/2diy/coding_vocab_quiz_y3
https://static.purplemash.com/mashcontent/applications/flashcards/coding_design_exmaples/Code%20design%20examples.pdf
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
http://www.purplemash.com/app/code/openended/freecodegibbon

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

7

cause these actions to occur. Use the design examples document to remind children of the types of

designs they have created in the past. They have made programs in the past that can do the

following:

• Characters that respond to being clicked.

• Characters that respond to collisions.

• Using timers to repeat actions.

• Using If statements.

5. Children may want to look over their programs from the past to refresh their memory on some

aspects if they have not used 2Code for a while. The Gibbon activities might provide further

reminders.

6. Once they have designed. They should rate their confidence at being able to code their design – they

could highlight this is red/amber/green on their design documents.

7. Children should then open the 2Write file and add the things that they are less confident at being

able to code to this. For example, ‘making my character only if the other character hides’. This will

provide you with information about specific coding structures to review over the next few lessons

where possible.

8. Children should begin to turn their design into code and save and test it regularly.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://static.purplemash.com/mashcontent/applications/flashcards/coding_design_exmaples/Code%20design%20examples.pdf

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

8

Lesson 2 – If/Else statements
Aims

• To introduce the If/else statement and use it in a program.

• To create a variable.

• To explore a flowchart design for a program with an if/else statement

• To create a program which responds to the If/else command, using the value of the variable.

Success criteria

• Children can create an ‘If/else’ statement.

• Children understand what a variable is in programming.

• Children can set/change the variable values appropriately.

• Children can interpret a flowchart that depicts an if/else flowchart.

Resources

Unless otherwise stated, all resources can be found on the main unit 4.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Gibbon Night and Day guided activity.

• Night and Day Flowchart set this as a 2do for the class.

Activities

1. Ask children what selection means in coding. You can remind them that the if statement is a

command that they have used to introduce selection in their programs. Review If statements. The

children first saw these when doing the Gibbon Guard the Castle activity (lesson 3 in year 3 unit 3.1).

Look at the flash card definition; can children remember how If statements can be used?

2. Review the term Variable; the children used it to create timers in lesson 4 last year (unit 3.1). They

might remember doing the variable role play in that lesson.

Selection

This is a conditional/decision command. When selection is used, a program will choose a different

outcome depending on a condition, for example; “repeat”; “repeat until”; “if/else”.

If

A conditional command. This tests a statement. If the condition is true, then the commands inside

the block will be run.

Variables are like boxes in which the computer can store information. To find the information in the

box, each box should be labelled. Therefore, each variable (each of our boxes) needs to have a name.

The name should be something that helps you remember what it is. The information inside the box

is called the Variable Value. The user, the program or another variable can change this Variable

Value.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y4/computing_sow_y4_4-1
https://www.purplemash.com/app/code/timers/nightandday2
https://www.purplemash.com/#app/games/2diy/example_flowchart_night_day
https://www.purplemash.com/app/code/gibbon/guard_the_castlex

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

9

3. Open the program Night and Day from the Gibbon activities. Watch the video for step 1 and do step

1 as a class. The variable ‘day’ will be set to 0 when it is night-time, and 1 when it is daytime.

4. Move on to Step 2 where you must add a timer and an If/else statement. First remind the class how

to add a timer that is called every 5 seconds.

5. Next, introduce the If/else statement:

6. Drag the inside the timer and discuss how to select options for the code so that

different code runs depending upon the value of the variable ‘day’. Also discuss how to change the

value of the variable by dragging the block into the if/else statement.

7. Read the resulting code, it says:

• ‘If the variable “day” is set to 0 then set it to 1, otherwise (else) set it to 0.’

8. The if/else statement is inside the timer which means that every five seconds the variable’s value

will change.

If/Else

A conditional command. This tests a statement. If the condition is true, then the commands inside

the ‘if block’ will be run. If the condition is not met, then the commands inside the ‘else block’ are

run.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/timers/nightandday2

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

10

9. In the next step, the program should respond to the variable by changing the colour of the sky and

making the sun show or hide.

10. Once this step is completed, the children are asked to debug the monkey’s code. Can they do this

together as a class?

11. Now, open the flowchart example on the board. Do children know what it is. They might have used

flowcharts in year 3. Trace the flowchart together, what coding structure does it represent? An

if/else statement.

12. Show children how to edit the chart, they should try to avoid restructuring the whole chart as this

can be quite fiddly and they won’t have time to code:

• Double-click on a box to edit the text.

• Drag a square over multiple boxes and lines to select them and then move them if necessary.

• Remove parts by clicking on them and then clicking ‘delete’ on the keyboard.

• Draw the arrows by clicking on a box, then clicking on the pale blue arrow and dragging to the box to

join.

13. Children should open this flowchart from their 2dos and plan a program with a character that

repeats an action until they input a command to stop it? For example, using a timer to repeat until a

character is clicked on. They should then code, save and test their program.

If they finish this, they can also try creating a program with an animal that moves and makes sounds

when using text commands. For example, asking the user to enter an animal name from a selection,

and then making an appropriate sound and/or an image appear, based on the user’s answer (using

If/else functions).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

11

Lesson 3 – Repeat Until
Aims

• To create a program with a character that repeats actions.

• To use the Repeat Until command to make characters repeat actions.

• To program a character to respond to user keyboard input.

Success criteria

• Children can show how a character repeats an action and explain how they caused it to do so.

• Children can make a character respond to user keyboard input.

Resources

Unless otherwise stated, all resources can be found on the main unit 4.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Repeat and sequence example program.

• Blank printable storyboards for designing.

Activities

1. In this lesson we will be reviewing and learning some vocabulary relating to programming. On the board,

go through the words Sequence, Selection, Repeat, Repeat Until, Input and Output. Children could play

memory games with the child flash cards to learn the vocabulary. Children can also review the

vocabulary using the quizzes found in the quizzes section on the bottom of the 2Code main screen.

2. Open the example program Repeat and Sequence example activity. First, read the code and try to work

out what the program will do. Children could jot down their ideas.

3. Then execute (run) the program. You need to click on the rocket and it begins blasting off, then a flock of

sheep appears, and the user must type in ‘Hide’ or ‘Panic’.

4. Look at Code View and point out the command. Can they ‘read’ the code to see what

this command is doing? When the user clicks on Reginald (the rocket), a message is printed to the screen

– Prepare for Launch – then Reginald will move right (adding 1 to the X property) this repeats until the X

is greater than the X position of Terry.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y4/computing_sow_y4_4-1
https://www.purplemash.com/app/code/examples/2c_y4lp3_repeat_sequence
https://www.purplemash.com/app/code/examples/2c_y4lp3_repeat_sequence

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

12

5. Ask children what/who is Terry? And what is the purpose of this piece of code? Terry is the launch pad

(you can work this out by looking for the object called Terry in Code View). The piece of code moves the

rocket onto the Launchpad.

6. Now look at the next part of the code.

7. Identify the following parts in the code; after three seconds (timer), there is a sound, a message is

printed to the screen and the rocket goes up.

8. Identify the following parts in the code; after another second (another timer), the rocket stops, and

three sheep appear (show). Note that, in the design, when you click on the sheep and look at the

properties box on the left-hand side, they are initially set to ‘Hide’.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

13

9. Identify the following parts in the code; the user is asked whether to Hide or Panic. The If/else statement

either hides the sheep or makes them run around. How does it do this? If the user types in something

other than Hide or Show, what should happen? Try it.

10. Children should plan a program, using the storyboards or 2Chart, with the following task specification:

Task: Create a short program that uses Repeat Until and If/else commands.

11. Once they have created written plans, they should add annotation showing the required objects and

actions/commands. They should also annotate their confidence in being able to turn the aspects of their

design into code and seek advice or refine their plans if they are not confident about coding the design.

They will need to decide whether the design is too ambitious for their current skill level or if there are

things that they have learnt but are not confident about and need a bit of help.

12. They can then code, save, test and debug.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

14

Lesson 4 – Making a timer
Aim

• To make timers and counting machines using variables to print a new number to the screen every

second.

Success criteria

• Children can explain what a variable is when used in programming.

• Children can create a timer that prints a new number to the screen every second.

• Children can explain how they made their program change the number every second.

Resources

Unless otherwise stated, all resources can be found on the main unit 4.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Example program Variable example code to be opened on the whiteboard to demonstrate..

Activities

1. Children used variables to create a timer in Year 3 (lesson 5 of unit 3.1). Can they remember how to

do this?

2. Why is it important for the variable to have a sensible name? (It makes it easier to keep track of as

the program becomes more complex.)

3. Open the example program and ask children to read the code and predict what the program will do.

Execute (run/play) the code to see if their predictions were correct.

4. Direct the children to watch the bottom left-hand corner of the screen as the timer counts. This is

the Variable Watch. It tells us what variables exist in the program and what they are doing. Variable

Watches are common in programming environments to help programmers understand what the

computer is doing and to debug their code.

5. Children should now to make their own timers. Once made, the children can experiment with

number variables and see what they can make their programs do using them, for example they could

try to make counting machines that count times tables.

6. They could also add a visual effect tot heir program, perhaps an object whose scale increases as time

goes no until it reaches a particular size. Then something else happens.

7. When they have had enough time experimenting with these, they can try the counting machines in

Coding Principles and practise with number variables (on the 2Code main page in the section called

Coding Principles).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y4/computing_sow_y4_4-1
https://www.purplemash.com/app/code/examples/2c_y4lp6_variables_example

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

15

Lesson 5 - Making a control simulation
Aim

• To explore how 2Code can be used to investigate control by creating a simulation.

Success criteria

• Children can create an algorithm modelling the sequence of a simple event.

• Children can manipulate graphics in the design view to achieve the desired look for the program.

• Children can use an algorithm when making a simulation of an event on the computer.

Resources

Unless otherwise stated, all resources can be found on the main unit 4.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Video of the UK traffic light sequence to view as a class.

• Traffic Light Algorithm vocabulary – print this so that children can see a copy while they watch the

video.

• (optional) Set the writing file Traffic Lights Algorithm as a 2do. Some children might find this more

accessible than using 2Chart to create a flowchart.

Activities

1. Remind children of the word algorithm and its definition;

2. Ask children to give some examples of everyday processes that you could write an algorithm for. For

example, making breakfast, getting dressed, the journey to school.

3. Explain that they are going to be creating an algorithm for a traffic light sequence and then using the

algorithm to write a computer program that simulates this sequence. Discuss the meaning of the

words simulates/simulation.

4. Display the traffic light vocabulary somewhere that children can see, suggest that some of these

words might help them when writing the algorithm.

5. Ask the children to take notes whilst watching the traffic light video that will enable them to write

the algorithm. You may need to play the video several times.

6. Show children how to open 2Chart from the Tools area of Purple Mash. Recommend that they start

with a blank sheet or edit the simple sequence example (they will need to make the boxes smaller).

NB You might want to direct some children to use the writing template linked in the resources

section – you can compare the resulting algorithm using the two methods.

• Show children how to change the text and add a title by double-clicking on the existing text.

An algorithm is a precise step by step set of instructions used to solve a problem or achieve an

objective.

A simulation is a model that represents a real or imaginary situation. Simulations can be used to

explore options and to test predictions.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y4/computing_sow_y4_4-1
https://www.purplemash.com/#app/lessonplans/video/traffic_light_video
https://www.purplemash.com/app/pup/traffic_lights_algorithm_vocab
https://www.purplemash.com/app/pup/traffic_lights_algorithm

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

16

• Show them how to remove unwanted parts by clicking on them and pressing the delete key.

• How to add arrows by clicking on a box, clicking on the pale blue arrow that appears and

dragging it to the box to be joined. The arrow lines can then be edited by dragging the blue dots

if necessary.

• It can be fiddly; the children do not have to get it looking perfect, the information it shows is the

main thing.

• Remind them to save regularly.

7. Give children 10 minutes to try to make a flowchart or diagram to show the algorithm. It should look

something like this:

Turn on red

Wait 10 seconds

Turn on amber

Wait 3 seconds

Turn off red

Turn off amber

Turn on green

Wait 10 seconds

Turn on amber

Turn off green

Wait 3 seconds

Turn off amber

Repeat all forever

8. Open Free Code Gibbon. In design view, change the background to one of the ready-made road

layouts (any will do).

Note: At a pedestrian

crossing the sequence

is different. For the

moment, we are

concentrating on

traffic lights that are

not at a pedestrian

crossing.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

17

9. Drag in any object, rename it trafficlight.

10. In the clipart picker is a section called ‘traffic lights’. Set

the image to the correct one for the start of the

sequence. They will be making the program by coding

their object to change image at the correct intervals.

11. Save the file and switch to code mode.

12. Now it’s time to code.

13. The code will need to repeat forever, what command is needed to do this? Children might suggest

the repeat or repeat until commands but the rest of the algorithm uses timers. Do they remember

what they learnt about using timers and repeat together in the past (see year 2, lesson 2 and year 3,

lesson 5). In 2Code timers do not work properly when used with repeat commands as the repeat

tries to run the code as quickly as possible while the timer tries to slow things down so you get

unexpected results. This means that children need to use timers to make the sequence repeat.

14. The way to code such a sequence in 2Code is to code the first sequence then write code that will

repeat this sequence. Give children a bit of time to try coding the first sequence, assuming the initial

traffic light image is the red light on. They should save, test and debug. Then bring the class back

together to see what they have achieved.

15. They will need to ensure that the timers are all nested (inside each other). Here is an example using

the algorithm above:

16. Now we want to make the sequence repeat. You can do this using a timer that repeats every x

seconds. Can children work out how many seconds x should be? To do this add up all the time

intervals 10+10+3+3= 26.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

18

17. If you just add this line of code and drag in the existing code, then the sequence will only start after

the first 26 seconds is over. Instead, leave the code as it is and drag in a new timer below the existing

code set it as follows:

Note the code in the timer says

 rather than after.

18. Now copy the sequence into this timer by adding additional blocks the same as the first sequence:

19. Now give the children time to write this code and test it.

20. An advantage of the development of simulations is to allow real-life situations to be tested out

before they are built in the ‘real world’.

21. Ask the children to imagine the scenario that this light was used at a cross-road junction and it was

found that the traffic was building up too much at the red light.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

19

22. Can they adapt the code so that the green light is on for longer and the red light for a shorter time?

23. They might need to re-write the algorithm to help them work out the timing.

Extension

24. The sequence on a pedestrian crossing is different because it is started when a pedestrian presses a

button.

25. Children could try to simulate this type of crossing as well.

26. There is a button object in 2Code.

27. A character object could be used for the red and green man; they allow their images to be changed

in the code and uploaded from a computer. Children could find red and green man pictures online

to use.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

20

Lesson 6 – Decomposition and Abstraction
Aim

• To know what decomposition and abstraction are in computer science.

• To take a real-life situation, decompose it and think about the level of abstraction.

• To design a decomposed feature of a real-life situation.

Success criteria

• Children can make good attempts to break down their aims for a coding task into smaller achievable
steps.

• Children recognise the need to start coding at a basic level of abstraction to remove superfluous details
from their program that do not contribute to the aim of the task.

Resources

Unless otherwise stated, all resources can be found on the main unit 4.1 page. From here, click on the icon to set

a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and ‘open

in new tab’ so you don’t lose this page.

• Some examples of simple board games such as snakes and ladders, chess and solitaire.

• Decomposition and Abstraction writing frame -set this as a 2 do or print copies

Activities

1. In coding lessons, children have been using decomposition and abstraction to achieve the aims of the task.

Do they have any idea what these words mean? (Probably not).

2. Explain that decomposition is breaking a task into its component parts so that each part can be coded

separately and brought together in the program. When they coded Day and Night, they broke this down

into what happens in day and what happens in night. In the timer tasks, they broke this down into making a

basic timer and then adding things that happened dependent upon the timer. If you were designing a

program that simulated a board game, you could split it into throwing the dice, moving the piece, winning,

losing, activity in between. When you create more complex programs and their algorithms it helps to

consider parts at a time

3. Abstraction is removing unnecessary details to get the program functioning. In the traffic light task, the road

layout was not relevant initially, the weather and time of day didn’t matter, and we didn’t add any cars to

the program. We made a simulation at a basic level (a high level of abstraction).

4. Today, you are going to try these two processes to code part of a simple board game. Children could choose

the game, or you could allocate different groups to different games.

5. Show the children the writing frame and ask for some examples relating it to any of the games that you

have. The writing frame has a word bank that will also help with this.

6. Children should fill in the sheet framework for their game and then use this to code one part of the game

e.g. throwing the dice, moving the piece, keeping tabs on which payer is winning. If children work in groups,

each child or pair could try coding a different part. The aim isn’t to finish coding the whole game but to

experience how this process works in coding and how it leads towards the final program. If children are

working in groups then they should decide upon the names for the objects in the game and the names of

variables and try to be consistent between groups so in an ideal situation, all the parts could be combined

into a program.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y4/computing_sow_y4_4-1
https://www.purplemash.com/app/pup/coding_decomposition_abstraction

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

21

Assessment Guidance
The unit overview for year 4 contains details of national curricula mapped to the Purple Mash Units. The following

information is an exemplar of what a child at an expected level would be able to demonstrate when completing

this unit with additional exemplars to demonstrate how this would vary for a child with emerging or exceeding

achievements.

Assessment Guidance

Emerging With support, children can turn a real-life situation into an algorithm for a program that has
cause and effect (lesson 5) and use their algorithm to write simple programs using 2Code
(lesson 1). Furthermore, they can identify errors within their programs and make logical
attempts to fix it (all lessons).

Pupils attempt to introduce repetition and selection into their code using timers and simple ‘if
statements’ (lessons 2, 3 & 4). Children’s use of these structures is experimental; they cannot
always predict the outcome accurately or anticipate the structures required when planning
their code. They have a developing idea that a variable can be used to store information in a
program, in lesson 5 they can follow the examples but might struggle when applying this with
their own ideas. Children can use the ‘get input’ command (lesson 2, step 14) to work with
user input.

Children’s designs for their programs, show that they are thinking of the structure of a simple
program in logical, achievable steps (lessons 1 & 2). Children can make good attempts to
‘read’ code and predict what will happen in a program which can help them to correct errors
in their code. In lesson 5, children try to write the algorithm for the traffic lights but might
miss some steps.

Expected Children can turn a simple real-life situation into an algorithm for a program by
deconstructing it into manageable parts (lesson 5 & lesson 6). Children’s design shows that
they are thinking of the required task and how to accomplish this in code using coding
structures for selection and repetition (lessons 2 & 3). Children can identify an error within a
program that prevents it following the desired algorithm and then fix it (lesson 4), they apply
these techniques to their own code to fix bugs.

Children’s use of timers to achieve repetition effects are becoming more logical and are
integrated into their program designs (lessons 2 & 4). They understand ‘if statements’ for
selection and combine these with other coding structures including variables to achieve the
effects that they design in their programs (lessons 2 & 4).

Their design demonstrates their growing understanding of when a coded solution will require
repetition e.g. in lesson 3, within 2Code example ‘Repeat and Sequence’ children can see that
the position of the rocket is changed repeatedly until it is in line with the rocket launch pad.
They can explain the new command ‘Repeat Until’.

They make use of user input (lesson 2, step 14) and outputs such as ‘print to screen’ (lesson 3)
as well as sound and movement of objects. They understand how variables can be used to
store information while a program is executing (lesson 4) and make attempts to use and
manipulate the value of variables.

Children’s designs for their programs, show that they are thinking of the structure of a simple
program in logical, achievable steps with attention to specific events that initiate specific
actions (lesson 1, step 4 and lesson 3, step 7). Children can ‘read’ others’ code and predict
what will happen in a program which helps them to correct errors (lessons 2 & 3). They can
also make good attempts to fix their own bugs as their coding becomes more complex (lesson

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

22

Assessment Guidance

5 & 6). In lesson 5, they make a good attempt to write the traffic light algorithm and can easily
recognise any errors in their algorithm when discussing it as a class.

Most children can create programs which accomplish a specific goal utilizing a variety of
media such as images (including photos), sounds and animation effects. Children can
manipulate graphics in the design view of 2Code to achieve the desired look for the program
(Unit 4.1 Lessons 1,5 & 6).

Children can interpret the flowcharts used to represent if/else (lesson 2) and create their own
when planning their programs. In lesson 5, children create a flowchart of the sequence of
traffic lights and use this to create a coded simulation of the traffic lights. They can
demonstrate the need for ‘repeat’ and as a result can use timers to make a repeating
sequence. Children can plan simple simulations using software such as 2Chart, adapting
premade templates such as ‘repeat until’ as required.

Exceeding Children are attempting to turn increasingly complex real-life situations into algorithms for a
program by deconstructing the situation into manageable parts (lessons 5 and 6). Children’s
design shows that they are thinking of the required task and how to accomplish this in code
using coding structures for selection and repetition and variables (lessons 2 & 3). Children can
identify an error within a program that prevents it following the desired algorithm and then
fix it (all lessons). Children make intuitive attempts to debug their own programs as they
increase in complexity.

Pupils realise the constraints of creating purely sequential programs and intuitively grasp the
concepts of selection (lesson 2), repetition (lesson 3) and variables (lessons 2 and 4). Children
like to challenge themselves to combine these with other coding structures to achieve the
effects that they design in all their programs (all lessons). Their designs are ambitious but
logical and achievable.

Children’s designs for their programs, show that they are absorbing new knowledge of coding
structures such as ‘if’ statements, repetition and variables to think of their programs in
logical, achievable steps (lesson 1, step 4 and lesson 3, step 7). Children can ‘read’ others’
code and predict what will happen in a program which helps them to correct errors (lessons 2
& 3). They can also make good attempts to fix their own bugs as their coding becomes more
complex (lessons 5 & 6). In lesson 5, they intuitively recognise the required steps of the traffic
light algorithm and can then adapt this to complete the extension activity.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

