THE WINTERTON FEDERATION MEDIUM TERM PLAN SCIENCE Spring 2 YEAR 3

Forces	Learning Objective	Activity – Switched On Science	STEM Activities	Success Criteria
Session	To observe the	Show the BBC video clip below on pushes and		I can explain the difference
1	forces that magnets	pulls. Make a list on their whiteboards of all		between a contact and a non-
	produce	the pushes and pulls they can see in the		contact force.
	produce.	video.		I can plan comparative and fair
	To report and	www.bbc.co.uk/learningzone/clips/pushesan		tests, and collect accurate results.
	present findings	d-pulls-no-narration/2435.html Pair up:		I can use the results of my tests
	present findings	Consolidate and review the understanding of		to explain some properties of
	from enquines.	everyday force. Ask them to recognise some		magnets.
		more pushes and pulls in objects that are in		
		contact with each other. Use pictures and		
		photographs, or ask them to think of other		
		pushes and pulls they might have come		
		across on their way to school. Extend learning		
		by asking which two objects are in contact		
		with each other. Discuss this and make a		
		table of their ideas either as a class or in		
		pairs. Get into groups: Explain that they are		
		going to look at magnetic forces and develop		
		skills of investigating. Provide a variety of		
		magnets. Make sure the magnets are not		
		labelled with north and south poles and are		
		strong enough for the children to feel their		
		effect. Ask them to investigate and record		
		what happens when they are brought		
		together, and to annotate their results using		
		the terms 'attract' and 'repel' and 'strong'		
		and 'weak'. The children can use 'Bringing		
		magnets together' on page 36 of their Activity		
		resource book to record their findings.		
Session	To observe the	Present a collection of magnets. Ask them to		I can explain the difference
2	forces that magnets	jot down the ways in which they might be the		between a contact and a non-
	produce.	same and how they might be different.		contact force.
		Gather their answers together. Then ask them		I can plan comparative and fair
	To report and	to come up with some simple ways of testing		tests, and collect accurate results.
	present findings	their ideas. Whole class teaching: Explain to		I can use the results of my tests
	from enquiries.	the children that they are going to develop		to explain some properties of
		skills in investigating as they find out more		magnets.

		about the properties of magnets. Use as	
		many of the investigations below as needed.	
		Think carefully about which of your class	
		groups will carry out each one. If your class	
		has come up with something else they wish to	
		test, enable them to do so. Are different	
		magnets equally strong? Are bigger magnets	
		stronger than smaller magnets? Which	
		materials can a magnetic force pass through?	
		How do magnets behave towards each other?	
		How far does the magnetic force spread away	
		from a magnet?	
		Encourage the children to come up with their	
		own way of planning and carrying out a fair	
		test, only giving them help when needed. Ask	
		them to make careful observations, present	
		these in the best way and explain what their	
		results show. The children can use the 'My	
		investigation plan' activity sheet to shape	
		their practical work (Activity resource book,	
		pages 37 and 38).	
Session	To name some	Have an assortment of materials and	I can name the three metals that
3	materials that	magnets.	can be made into a magnet.
	magnets can attract	Make predictions as to which materials	I can explain the difference
	and some they	are attracted to magnets. Why do you	between a magnetic and a non-
	cannot.	think this?	magnetic material.
	To list at least ten	Test the predictions and record results.	I can list ten uses of magnets.
	uses of magnets in		
	everyday life.		
Session	To explain what a	Give the children a bar magnet and some	I can explain what the poles of a
4	magnetic pole is	paperclips. Ask them to find out where the	magnet are and some of their
	and what it can do.	magnet seems to pull them the strongest.	properties.
	To predict whether	Discuss and establish that the magnetic	I can describe the Earth's
	two magnets will	attraction is strongest at the two ends of the	magnetic field and explain what it
	attract or repel	magnet. Also discuss that the magnetic force	does to magnets
	each other.	is equally strong at both ends. Show the	. I can predict what will happen
		children a compass. It helps if you have quite	when like and unlike poles of a
		a large one – they can see it more easily.	magnet are brought together.
		Explain to the children that the compass has a	
		magnet spinning on a pivot. Show them what	

		happens when the compass needle moves and then comes to rest – explain that it seems always to stop facing the same direction. At this stage, don't mention the idea of poles. Instead, simply explain that for the compass to work, the needle must be able to move freely. Group practical: Ask different groups to	
		magnet so that it moves freely. They might	
		come up with the idea of suspending a	
		magnet on a thread or floating it on a small	
		think about which equipment they will need	
		for their investigation.	
5	magnetic pole is and what it can do. To predict whether two magnets will attract or repel each other	happens when the poles of two magnets are brought together. Ask them for their predictions. Record on 'The magnetic rule' activity sheet (Activity resource book, page 41). Label the poles of a bar magnet N and S and	magnet are and some of their properties. I can describe the Earth's magnetic field and explain what it does to magnets I can predict what will happen
		suspend it from a thread. Encourage them to investigate what happens when the poles of another bar magnet are brought up close to the poles of the first magnet in different ways. Work scientifically, record what they predict will happen in each case and note down what they observe. Ask them if they can come up with a scientific rule that describes what they see. Ask them to present their results in a sensible way. They could repeat their investigation with horseshoe or other shaped magnets to find out if the same rule applies. Discuss in pairs the rules they have come up with and gather the class rules on the classroom whiteboard. Emphasise that 'Like poles repel and unlike poles attract'. Group learning: Watch the film 'Opposites attract' and discuss as a class.	when like and unlike poles of a magnet are brought together