

Year 4 | Summer Term | Week 1 to 2 – Number: Decimals

Overview Small Steps

NC Objectives

Compare numbers with the same number of decimal places up to two decimal places. Round decimals with one decimal place to the nearest whole number. Recognise and write decimal equivalents to $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ Understand the effect of dividing a one or two digit number by 10 or 100. Identifying the value of the digits in the answer as ones, tenths and hundredths.

Make a Whole

Notes and Guidance

Children make a whole from any number of tenths and hundredths.

They use their number bonds to ten and one hundred to support their calculations. Children use pictorial and concrete representations to support their understanding.

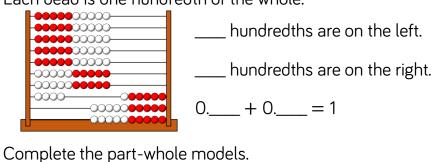
Mathematical Talk

How many tenths make one whole?

How many hundredths make one tenth?

How many hundredths make one whole?

If I have ____ hundredths, how many more do I need to make one whole?

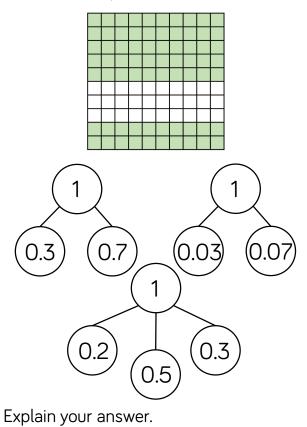

Varied Fluency

Here is a hundred square.

How many hundredths are shaded? How many more hundredths do you need to shade so the whole hundred square is shaded?

_ hundredths + ___ hundredths = 1 whole

Here is a rekenrek with 100 beads. Each bead is one hundredth of the whole.


1 0.3 0.3 0.34 0.34 0.34 0.34

Make a Whole

Reasoning and Problem Solving

Which part-whole model does not match the hundred square?

0.03 + 0.07 does not equal one whole so this one does not match.

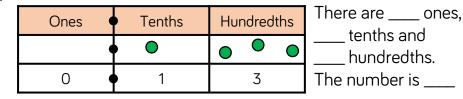
7 does ne s one	Three bead strings are 0.84 m long altogether.	Longer because each bead string is 28 cm (0.28 m)	
atch.	Would four bead strings be longer or shorter than a metre?	long, and 0.84 + 0.28 = 1.12 which is greater	
	Explain how you know.	than 1 metre.	

Write Decimals

Notes and Guidance

Children use place value counters and a place value grid to make numbers with up to two decimal places.

They read and write numbers with decimals and understand the value of each digit.

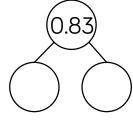

They show their understanding of place value by partitioning numbers with decimals in different ways.

Mathematical Talk

How many ones/tenths/hundredths are in the number? How do we write this as a decimal? Why? What is the value of the ____ in the number ____? When do we need to use zero as a place holder? How can we partition decimal numbers in different ways?

Varied Fluency

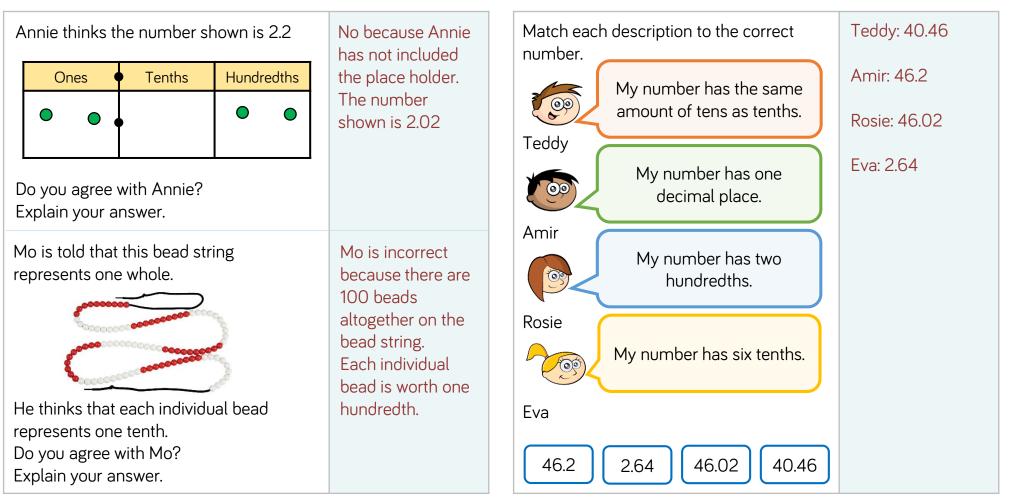
What number is represented on the place value grid?



Make the numbers on a place value chart and write down the value of the underlined digit.

3.47	2.15	0.6	<u>2</u> 5.03	
—	—	—	—	

Complete the part-whole model in two different ways and write a number sentence to go with each.



0.83 = 0.7 + ____

Write Decimals

Reasoning and Problem Solving

6

Compare Decimals

Notes and Guidance

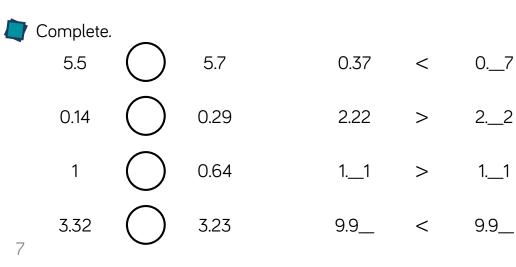
Children apply their understanding of place value to compare numbers with decimals with up to two decimal places. They will consolidate and deepen their understanding of 0 as a place holder when making a comparison.

Varied Fluency

Write the numbers shown and compare using < or >

1	ths	ndred	Hur	S	enth) T	6	Ones
	0	0	0	0	0	0		

 Ones	Tenths	Hundredths
	• • •	$\circ \circ \circ \circ$



Draw counters in the place value chart to make the statement

correct.

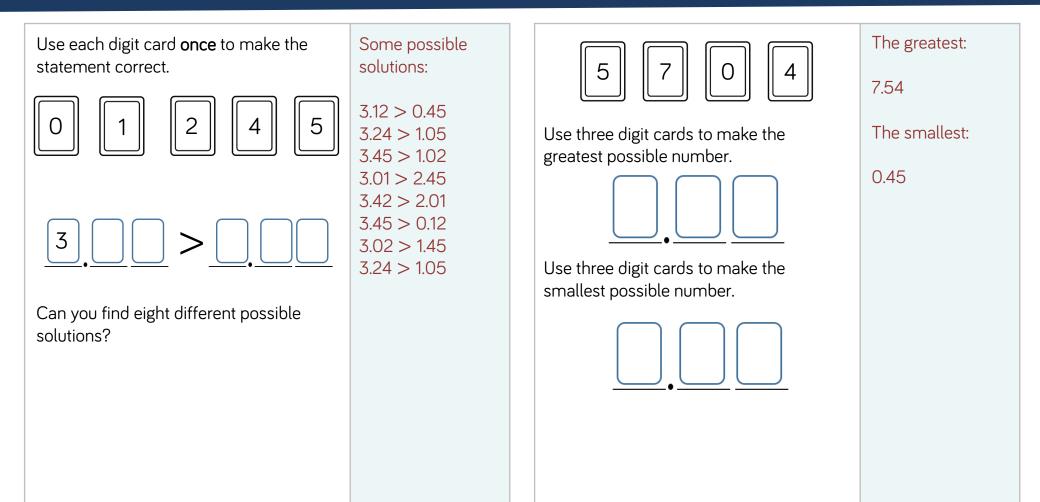
Ones		Tenths	Hund	lredths	
0	0	•	0	0	<
	•				

Ones	Tenths	Hundredths

Mathematical Talk

How many tenths does it have?

There are ____ tenths and ____ hundredths.


The number is .

_ is greater/less than ____ . ___ because ...

Compare Decimals

Reasoning and Problem Solving

Order Decimals

Notes and Guidance

Children apply their understanding of place value to order numbers with decimals with up to two decimal places. They will consolidate and deepen their understanding of 0 as a place holder, the inequality symbols and language such as ascending and descending.

Varied Fluency

Write down the decimals represented in the place value grid and then place them in ascending order.

Ones (Tenths	Hundredths	
0		0	

Ones (Tenths	Hundredths
0		

Ones	Tenths	Hundredths		
	\circ	• •		

Ones	Tenths	Hundredths
•	•	0 00

Mathematical Talk

Which digit can we use to compare these decimals? Will this always be the case?

Do we always use the digit furthest left to compare decimals?

____. ____ is ______ than ___. ____ because ...

Order Decimals

Reasoning and Problem Solving

Spot the Mistake

Rosie is ordering some numbers in ascending order:

0.09 < 0.99 < 10.01 < 1.35 < 9.09

Can you explain her mistake?

Rosie hasn't considered the place value of the digits in the numbers and has just ordered by comparing individual digits left to right.

Some children have planted sunflowers and have measured their heights.

Child	Height
Beth	1.23 m
Tony	0.95 m
Rachel	1.02 m
Kate	1.2 m
Faye	99 cm
Emma	0.97 m

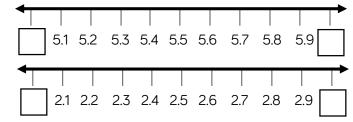
Ascending: Tony, Emma, Faye, Rachel, Kate, Beth

Descending: Beth, Kate, Rachel, Faye, Emma, Tony

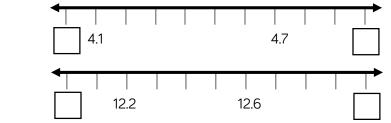
Order the children based on the heights of their sunflowers in both ascending and descending order.

Round Decimals

Notes and Guidance

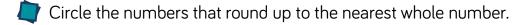

Children round numbers with 1 decimal place to the nearest whole number. They look at the digit in the tenths column to understand whether to round a number up or not. It is best to avoid the phrase 'round down' as this can sometimes lead to misconceptions. Children need to be taught that if a number is exactly half-way, then by convention we round up to the next integer.

Mathematical Talk


- Which whole numbers does the decimal lie between?
- Which whole number is the decimal closer to on the number line?
- Which column do we focus on when rounding to the nearest whole number?
- Which digits in the tenths column do not round up to the nearest whole number?
- Which digits in the tenths column round up to the nearest whole number?

Varied Fluency

Which integers do the decimals lie between?



Complete the sentences to describe each decimal.

___ is closer to ____ than ____

____ rounds to _____ to the nearest whole number.

4.5	3.7	2.3	4.2	16.8	1.9
		. –			

Round Decimals

Reasoning and Problem Solving

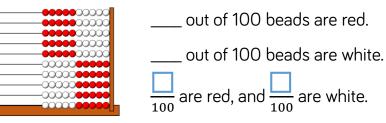
Mo says 0.4 rounded to the nearest whole number is zero. Whitney says 0.4 rounded to the nearest whole number is one. Who is correct? Why?	Mo is correct. 0.4 lies between 0 and 1, as there are only four tenths, the number rounds to zero.	A number with one decimal place rounded to the nearest whole number is 45 What could the number be?	The number could be: 44.5, 44.6, 44.7, 44.8, 44.9, 45.1, 45.2, 45.3 or 45.4

Halves and Quarters

Notes and Guidance

Children write $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{3}{4}$ as decimals. They use concrete and pictorial representations to support the conversion. Children use their knowledge of equivalent fractions to write fractions as hundredths and then write the fractions as halves or quarters.

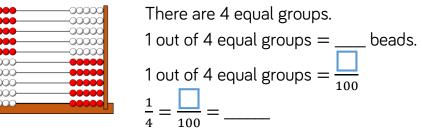
Mathematical Talk


How would you write your answer as a decimal and a fraction?

Can you represent one quarter using decimal place value counters?

Can you represent three quarters using counters on a place value grid?

Varied Fluency


Here is a rekenrek with 100 beads.

Half of the beads are red, and half of the beads are white.

 $\frac{1}{2} = \frac{50}{100} = \frac{5}{10}$, so $\frac{1}{2}$ is _____ as a decimal.

The beads are split equally on each side of the rekenrek.

What fraction is represented by 3 out of the 4 groups? Can you write this as a decimal?

13

Halves and Quarters

Reasoning and Problem Solving

Alex says:

If I know $\frac{1}{2}$ is 0.5 as a decimal, I also know $\frac{3}{6}$, $\frac{4}{8}$ and $\frac{6}{12}$ are equivalent to 0.5 as a decimal.

Explain Alex's thinking.

Alex has used her knowledge of equivalent fractions to find other fractions that are equivalent to 0.5 Dexter has made a mistake when converting his fractions to decimals.

$$\frac{1}{2} = 1.2$$
, $\frac{1}{4} = 1.4$ and $\frac{3}{4} = 3.4$

What mistake has Dexter made?

Dexter has incorrectly placed the numerator in the ones column and the denominator in the tenths column. He should have used equivalent fractions with tenths and or hundredths to convert the fractions to decimals.